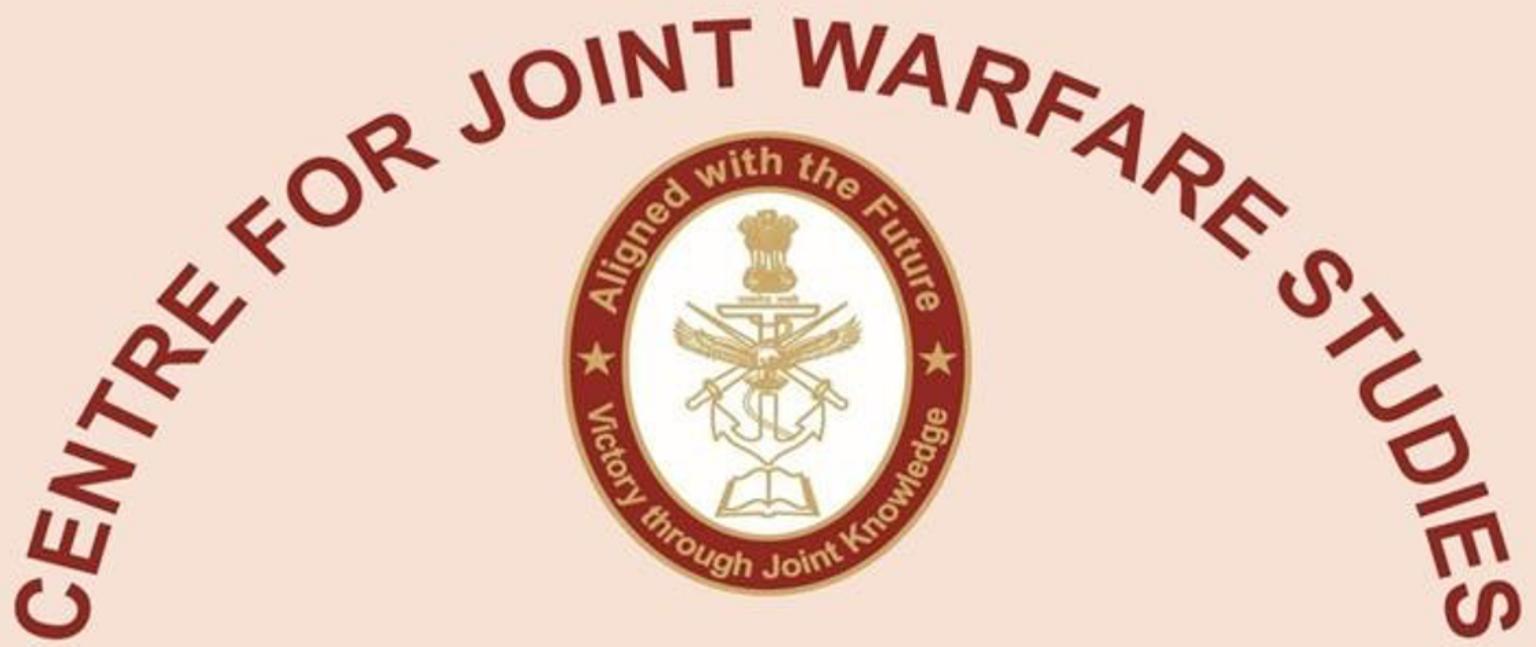


CENJOWS


ISSUE BRIEF

IB / 07 / 26

DIGITAL TWIN

NEXT-GEN MILITARY OPERATIONS: LEVERAGING AI FOR EFFICIENT LOGISTICS, ENERGY MANAGEMENT, AND CLIMATE PREPAREDNESS

DR NISHAKANT OJHA

CENJOWS

**Next-Gen Military Operations:
Leveraging AI for Efficient
Logistics, Energy Management,
and Climate Preparedness**

Dr Nishakant Ojha is a strategic expert on AI, quantum, and emerging technologies, analysing their impact on defence, intelligence, warfare, and geopolitics and a Chair of Excellence at CENJOWS

Abstract

The new generation army working force modernising themselves with the aid of artificial intelligence. The modern means can assist in logistic supply management, energy management, and weather forecasting and prepare a task force to meet challenging circumstances. It is an appropriate example of advanced countries, such as the U.S. agency and NATO routing system. Smart microgrid saves on fuel by 35 per cent, offers a continuous supply of power to uninterrupted missions. Another example is the AI model that assists in taking swift action in the 2024 cyclone and 2025 Operation Sindo in India. Such issues as cyber-attacks and weak security continue along with a progressive system. Those advance tool and enhanced self-driven automated tools are used to reduce the risk to human life in many countries such as the U.S., Russia, China, Europe, and India. Encourage compatible platforms, strengthen cybersecurity, speed up renewables and work together in the world to ensure clear AI oversight.

Keywords: Predictive analytics, smart energy management, military logistics, artificial intelligence (AI), operational resilience, and climate preparedness.

Introduction

The new era of modern technologies has consumed the boundaries in all such fields like energy management, catastrophe prevention, and logistic assistance.¹ New standards for research and real-life implementations were set by an advanced military defence system.² The sophisticated analytical methods are discovered to be useful in the logistic sector in terms of researchers in various nations searching about new prospects in upgradation of technologies such as the United States, the United Kingdom, the European Union, India, Russia, China, and Brazil³ to predict the demands, visibility to the supply chain and risk analysis, and the sustainable and safe allocation of resources.⁴ The progress is discovered to be more effective, versatile, nonhazardous, sustainable, and continuous in the undesired occurrences. The US Department of Defence advanced their technology of mapping the field that is precise and fast in giving accurate results, and assists decision makers in making quick decisions to support systems prepared at all times.⁵ To ensure a continuous communication network to offer all possible assistance at all points U.S and its allies in Europe modernised the tools to use Realtime data surveillance system and smart management systems.⁶ The use of sophisticated forces and forward machines to handle the scenario in the cyclone-hit regions in India in 2014 is the best illustration to indicate how such technological advancement can be useful in the contemporary world.

The collective efforts of Russia and China in coming up with research that assists in managing the supplies and the support that the front-line soldiers will receive in critical operations with improved technology.⁷ Most of the National disaster response agencies all over the world, within a very short time, upgrade by a third of the machinery and tools in an effort to ensure that there is continuous communication in all circumstances and offer rapid response, also minimise the harm caused by any disaster and save more lives. Also, pinpoint precision, sustainability, wide use, assistance in fast decision, enhance functionality and reduce the risk of hazards are the outstanding improvements of such technology. It will also assist in diminishing the human contribution and easing challenging tasks, surmounting life-threatening risks.⁸

Background and Context

The high pace of digital connectivity, self-directed system and information technology is modernising our defence systems all over the world. The military is also prepared with

numerous instruments, soldiers and equipment enhance the working capabilities and decision-making authority even in extreme situations. Drone vehicles and self-driven drones can carry out even complicated tasks with high accuracy, do not require human intervention and can cause no physical damage to the soldier.⁹ The under predictive analytics and combined system of courses entail a management system and also presuppose the complete management of demand and supply based on the actual time demands that contribute to the positive management of the intense mission without any risky impact.¹⁰

The necessity to be more defensive against physical assault, and this is in conjunction with the cyber-attack, the system must be made more flexible and sturdier against the attack. The ineffective network, connectivity,¹¹ supply chain discrepancy, drastic weather circumstances or the likelihood of a simple hacking of the system can make the mission fail or rather be delayed.¹² The decarbonization prevention will need the energy management¹³ as a major step that would make the energy continuous to supply the demand and fulfil the mission.¹⁴ Automated systems help predict the change of the weather correctly and in time, and additionally help minimise the loss and gives time to act immediately.¹⁵ The constraints involved in both the traditional systems can be evaded, and the most important steps and requirements.¹⁶

Core Challenges

In the future, some fundamental aspects such as energy management, weather forecasting, and supply chain support system management will turn out to be significant concerns. Those essential needs will have a significant influence on the sustainability, the accuracy and the performance of the soldiers. The cumbersomeness of the logistics in battle field we can hardly transport, and boots, troops, and rovers can easily get it in. However, the biggest problem that is related to automated systems is the possibility of being attacked by hackers, physical damage, and power outages. Turkey and Syria saved the lives of many people with the help of a developed logistical distribution chain and rescue robots in the case of a huge earthquake in 2023. The army is able to locate the demand and supply easily for the individual. The dependency of energy management systems on fossil fuels is currently the issue that needs to be taken into consideration and require to find alternatives.¹⁷

The U.S. military improve base energy management system is a best example of the solution to such issues. A noticeable thing is how to establish renewable energy resources instead of

depending on fossil fuel.¹⁸ The renewable energy resources provide an uninterrupted supply to run the system continuously. When a hurricane struck in 2024 military took quick action to save more and more lives. We can also reduce the carbon imprints and save the environment from pollution and the development of serious issues.¹⁹ The tension among NATO Nations threatens climate goals by enhancing fuel consumption to maintain surveillance and utilising more fossil fuel.²⁰

AI & Digital Transformation in Military Operations

The development in technology changes the working culture and environment by replacing outdated equipment with new and sophisticated equipment. Such devices and tools are more accurate, less time-consuming and easier to handle, and can show connectivity with older versions. Such devices streamline the soldier's response time to survive in extreme conditions, save money, save effort, identify the need to improve, and refine the time and effect of the response. The U.S. Defence Logistics Agency uses advanced algorithms to analyse large data sets in order to avoid unwanted cyber attacks and system damage. These types of systems are complex, but do present a risk of being attacked.²¹

Dynamic pathfinding algorithms and traffic prediction algorithms assist in understanding geography, obstacles, potential threats, and optimal routing. These algorithms can enhance geographic mobility and organise more efficient course strategies for the movement of troops and drones. Military base complex energy management systems adjust to the varying energy consumption rates, demands, supply requirements, and the changing operational loads. Microgrids integrated with renewable energy sources will provide an uninterrupted power supply even in the case of a disruption to the grid. The installation of these systems in different military stations in the U.S. and Europe is installed, and it lowers the reliance on fossil fuel, pollution, without physical damage, and automatically adjusts.²²

Case studies

It assures the completion of tasks in less time and increases the rate of success, making us safer and more precise in order to get desire results.²³

Energy Optimisation in Military Bases

Tactical microgrids are small power networks that consist of energy sources like solar panels, wind turbines, fossil fuel, generators, and different types of batteries as prominent sources of energy and are used for smart and uninterrupted power supply to fulfil domestic and other demands. A microgrid helps to maintain a continuous power supply, so during important operations, it cannot affect the task and ensure the chances of success. The United States Army use these microgrids as a continuous source of energy that reduces the dependency on fuel to generate electricity and provides electricity to such stations.

Such a system maximises efficiency and minimises waste by controlling the flow of energy, indicating the consumption rate, and balancing loads using smart sensors, overall advancement in conventional systems to make it an advanced and sustainable source. Numerous benefits like reducing fuel consumption up to 35%, ensure uninterrupted supply, preventing physical damages and stopping cyber threats. Microgrids are renewable sources minimize carbon footprints, have low maintenance, easy to use system.²⁴ Hydrotreated Vegetable Oil (HVO) is introduced as an alternative to conventional energy sources, more eco-friendly, compatible, and suitable for modern engines. introduced as sustainable sources due to their availability and easy handling.²⁵

To fulfil energy demands in different military bases like the Marine Corps, Air Station Myanmar uses solar electricity, landfill gas, and advanced remote-controlled generators. But in the near future, microgrid energy resources replace other alternatives and make ministry bases more resourceful. The proper energy supply gives better chances and an easy, uninterrupted work environment.²⁶

AI-Aided Climate and Disaster Preparedness

The analytics helps to identify hazards and better response against it, Technology support in betterment of emergency condition handling ability. If the system provides timely updates about extreme disasters like hurricanes, floods, wildfires, and droughts, it's easy for us to take the required precautions and security measures to face such situations and trigger warning signs on time. We can also anticipate recurrence or identify disaster prone location by analysing the dataset developed by the system. With the help of such information, we can deploy military, predict the impact, shift important personnel, start evacuations, and gather required supplies on

time. The advancement also helps to overcome the direct encounter of such events and save citizens by taking necessary actions.

The improvement in connectivity improves routing, logistic supply, better assistance, and the prediction of possible unexpected events. The uninterrupted connection establishes continuous information exchange, which helps to provide important information sharing on time. Drone and driverless cars can move on extreme roads and areas without endangering soldiers' lives, and also make him connected with the event in real time. The controller can prioritise the rescue and manage many goals at a time. and complete the tasks without taking much time. Rapid and assure result can be guaranteed with less or no risk. The technology provides many such advancements that are hot topics of research nowadays, and also applies to check their suitability in real-life events.

Integrated Readiness: Combining Logistics, Energy, and Preparedness

The better logistic support, smart energy management system, better prediction of climate change, and improved disaster management system provide contemporary military with effective tools and machinery. The system is a tethering mechanism which makes the security system robust, flexible, strong and effective. The existing platforms offer multifunction platforms which can handle a wide range of tasks at the same time and store all the records that may be exploited later. A valuable source of research and understanding can make the tools more effective in averting losses, helps to know the origin, effects, and potential effects. The data is also helping to revise the existing technology and also determine the area of weakness in said technology to better equip us better in facing such incidents.

The three developed systems control the supply chain, respond in a rapid and responsive fashion to changing circumstances, are able to change the route in order to respond to real-time data, and control the use of energy to support the mission even in the event of an extreme stress situation. A machine controlled remotely informs the military forces of the necessary information and notifies them of the potential unexpected difficulties so that they can make the necessary move. The armed force is able to operate at maximum capacity in any emergency. In the future, the presence of human beings in war areas will be completely eliminated since machines can be operated remotely and can execute their duties in the most efficient manner possible.

Challenges and Limitations

The cutting-edge technologies offer a lot of advances in the management of any kind of military work; however, there are some limitations and significant challenges. There should be a balance between automation systems and the human intervention that is needed to control the system. The systems are also intricate and therefore demand higher levels of command in making decisions. Another significant problem that can also be mentioned in the discussion is the field of cybersecurity. The systems are prone to attacks that can cause a breakdown of the systems.

Moreover, the rapid rate of technological evolution has also presented difficulties with respect to issues of ethics and governance of accountability, transparency, and governance of autonomous and semi-autonomous systems.

The main problem that arises out of such a situation is that such technologies are quite costly to develop, as well as to use. These technologies are very costly because they entail the development of sophisticated software that must be subjected to constant updating processes. The evolution of technologies and the actual tests are a challenge because of the different emerging developments in technology.

Algorithms, bias, data quality, maintenance, and integration with older systems can also be faulty in them. Nevertheless, the compatibility of the modern technologies with the age-old systems is likely to be a time-consuming process involving numerous tests of compatibility. The boundary will be crossed when the safety of the operations is guaranteed to save morality, and the purpose of the developed age technologies will be achieved.

Recommendations and Future Prospect

Numerous significant tactics have been discovered, and improvements in requisite technologies are needed to enhance military operations' efficiency in a continuous manner. We can take control and keep continuous surveillance over every required action. Defence organisations must focus on a more compatible platform that can smoothly interact with old systems. To ensure better functionality and successful coordinated operations with troops, the barriers need to be removed. Protection against cyber attack is more advances and safe cyber security need to be developed. Infrastructure must be developed and carefully maintained with every possible chance of error to encounter the issue and ensure consistent functionality. More

proactive and predictive measures in logistics and crisis management will be made feasible by increasing the use of real-time data collected from sensors and satellite networks. Accelerating the deployment of renewable energy microgrids in tandem with intelligent energy optimisation would boost operational resilience while also advancing environmental sustainability goals.

To ensure successful human operation, need to manage sophisticated and moral combat scenarios; future goals must be focused on boosting the transparency and reliability of self-decision-making systems. Development of a model that can be controlled from anywhere can enter harsh environmental conditions without risking human life. Policy framework need to be set in such a way that it can adapt and bring compliance with international laws and moral values to address governance, accountability, and transparency. To develop scalable, responsible solutions and exchange best practices globally, cooperation between the defence sector, academic institutions, and industry is important. Together, these programs will develop a military preparation that is safe, resilient, and able to effectively meet shifting geopolitical and environmental concerns.

Conclusion

With the application of cutting-edge technologies, defense system evolve progressively with better applicability in managing every possible situation even without direct involvement of humans. It opens new dimensions of the applicability develop new roles and skill sets. The development ensures security not only against human attack, but also against natural disasters and against unexpected event. Innovation suggest batter use of energy and helps in finding alternative sources of energy. That alternative sources are more nature-friendly provide an uninterrupted and renewable source. However, this advancement is predicated upon resolving problems such as cybersecurity threats, interconnection of systems, and the expenses involved with infrastructure changes and staff training.

Defence organisations must be focused on developing a compatible system that can synchronise with old systems, has global applicability, improves cyber security, and adapts sustainable resources for energy supply. Clear supervision, openness, and flexibility for sophisticated and growing operational requirements should be ensured by future initiatives. Future military preparedness will ultimately depend on agility, sustainability, and precise coordination to meet the evolving demands of environmental issues and global security.

DISCLAIMER

The paper is the author's individual scholastic articulation and does not necessarily reflect the views of CENJOWS, the Defence forces or the Government of India. The author certifies that the article is original in content, unpublished, and it has not been submitted for publication/web upload elsewhere and that the facts and figures quoted are duly referenced, as needed and are believed to be correct.

END NOTES

¹ Nguyen, N. (2025, September 10). AI in Military: Top Use Cases You Need To Know. SmartDev. <https://smartdev.com/ai-use-cases-in-military/>

² Jałowiec, T., & Palisziewicz, J. (2025). Military experience of using artificial intelligence as a benchmark to drive innovation and productivity in the logistics area of contemporary organizations. *Issues in Information Systems*, 26(4), 221–232. https://doi.org/10.48009/4_iis_2025_119

³ Laird, R. (2025, November 4). From algorithms to kilowatts: The energy challenge of military AI. Defense.info. <https://defense.info/re-thinking-strategy/2025/10/from-algorithms-to-kilowatts-the-energy-challenge-of-military-ai/>

⁴ Defense Logistics Agency. (2025, May 1). *Utilization of Artificial Intelligence (AI) to illuminate supply chain risk*. <https://www.dla.mil/About-DLA/News/News-Article-View/Article/4186367/utilization-of-artificial-intelligence-ai-to-illuminate-supply-chain-risk/>

⁵ Avathon. (2025, April 2). How can warfighters use AI to improve military supply chain management? Avathon. <https://avathon.com/blog/how-can-warfighters-utilize-ai-to-improve-military-supply-chain-management/>

⁶ Iancu, C., & Jianu, E. (2025). Artificial Intelligence-Driven economic changes in military and civilian logistics. *Proceedings of the . . . International Conference on Business Excellence*, 19(1), 3553–3570. <https://doi.org/10.2478/picbe-2025-0271>

⁷ Admin. (2025, May 8). AI-Driven Disaster Response Coordination in 2025 | Future of Emergency Management. Pharaoh Soft | GovTech, AI, Cloud, Cybersecurity & IT Solutions for Government & Enterprises. <https://pharaohsoft.com/ai-driven-disaster-response-coordination-in-2025-future-of-emergency-management/>

⁸ Clapp, S. & European Parliamentary Research Service. (2025). Defence and artificial intelligence. In EPoS | European Parliamentary Research Service (Report PE 569.580).

⁹ Kruse, J., U. S. Air Force & DEFENSE INTELLIGENCE AGENCY. (2025). 2025 Worldwide Threat Assessment. (armedservices.house.gov)

¹⁰ Samuel, C. & Manohar Parrikar Institute for Defence Studies and Analyses. (2025). Evolving military roles in cyberspace. In MP-IDSA Monograph Series (No. 89). Manohar Parrikar Institute for Defence Studies and Analyses. <https://www.idsa.in/wp-content/uploads/2025/01/monograph-89.pdf>

¹¹ Dong, W., Ran, Q., Liu, F., Deng, R., Yang, J., Wang, K., Wang, X., Zheng, D., Li, C., Liang, W., Chou, J., Yuan, W., & Chen, D. (2025). Rising military spending jeopardizes climate targets. *Nature Communications*, 16(1), 4766. <https://doi.org/10.1038/s41467-025-59877-x>

¹² Tillman, C. (2025, June 11). Military Response to Climate Hazards (MIRCH) Tracker: February-May 2025 update. The Center for Climate & Security. <https://climateandsecurity.org/2025/06/military-response-to-climate-hazards-mirch-tracker-february-may-2025-update/>

¹³ Vogler, A., & Teicher, H. (2025). Short of disarmament: Towards a climate-responsible military despite geopolitical tensions? *Contemporary Security Policy*, 1–30. <https://doi.org/10.1080/13523260.2025.2580624>

¹⁴ ConEnvObs. (2025, August 1). How increasing global military expenditure threatens SDG 13 on Climate action. CEOBS. <https://ceobs.org/how-increasing-global-military-expenditure-threatens-sdg-13-on-climate-action/>

¹⁵ Yuste, P., Campbell, J., Canyon, D., Childers, M., & Ryan, B. J. (2019). *Synchronized humanitarian, military and commercial logistics: An evolving synergistic partnership*. **Safety**, 5(67). <https://doi.org/10.3390/safety5040067>

¹⁶ Von Der Gracht, H. A., & Darkow, I. (2010). Scenarios for the logistics services industry: A Delphi-based analysis for 2025. *International Journal of Production Economics*, 127(1), 46–59. <https://doi.org/10.1016/j.ijpe.2010.04.013>

¹⁷ Ropotan, A. M. M. M. A. (2025, October 25). Resilience and agility: supply chain requirements in military operations. The Defence Horizon Journal. <https://tdhj.org/blog/post/resilience-agility-military-supply-chain-2/>

¹⁸ Dutta, A. (2025, September 30). Energy Affairs, Security and Defence: India's Strategic balancing in 2025. Modern Diplomacy. <https://moderndiplomacy.eu/2025/09/30/energy-affairs-security-and-defence-indias-strategic-balancing-in-2025/>

¹⁹ Admin. (2025c, May 8). AI-Driven Disaster Response Coordination in 2025 | Future of Emergency Management. Pharaoh Soft | GovTech, AI, Cloud, Cybersecurity & IT Solutions for Government & Enterprises. <https://pharaohsoft.com/ai-driven-disaster-response-coordination-in-2025-future-of-emergency-management/>

²⁰ Yuste, P., Campbell, J., Canyon, D., Childers, M., & Ryan, B. J. (2019). *Synchronized humanitarian, military and commercial logistics: An evolving synergistic partnership*. *Safety*, 5(4), 67. <https://doi.org/10.3390/safety5040067>

²¹ Dong, W., Ran, Q., Liu, F., Deng, R., Yang, J., Wang, K., Wang, X., Zheng, D., Li, C., Liang, W., Chou, J., Yuan, W., & Chen, D. (2025b). Rising military spending jeopardizes climate targets. *Nature Communications*, 16(1), 4766. <https://doi.org/10.1038/s41467-025-59877-x>

²² ConEnvObs. (2025b, August 1). How increasing global military expenditure threatens SDG 13 on Climate action. CEOBS. <https://ceobs.org/how-increasing-global-military-expenditure-threatens-sdg-13-on-climate-action/>

²³ Emam, W., Waqas, H. M., Mahmood, T., Rehman, U. U., & Pamucar, D. (2025). AI-driven energy management system based on hesitant bipolar complex fuzzy Hamacher power aggregation operators and their applications in MADM. *Scientific Reports*, 15(1), 13083. <https://doi.org/10.1038/s41598-025-94340-3>

²⁴ Dev, A., Kumar, V., Khare, G., Giri, J., Amir, M., Ahmad, F., Jain, P., & Anand, S. (2025). Advancements and Challenges in Microgrid Technology: A comprehensive review of control strategies, emerging technologies, and future directions. *Energy Science & Engineering*, 13(4), 2112–2134. <https://doi.org/10.1002/ese3.2095>

²⁵ Talib, M. M., & Crook, M. S. (2023). AI-Enhanced Power Management System for Buildings: A Review and Suggestions. *Journal Européen Des Systèmes Automatisés*, 56(3), 383–391. <https://doi.org/10.18280/jesa.560304>

²⁶ Mallery, J., Van Bossuyt, D. L., & Pollman, A. (2022). *Defense installation energy resilience for changing operational requirements. Designs*, 6(2), 28. <https://doi.org/10.3390/designs6020028>